Park Hill Thorns Federation

Routes through Calculations

January 2019

The policy is based on the following ideas:

- Children should develop a clear conceptual understanding of arithmetic processes.
- Children should have fluent recall of number facts, including addition facts within 10 , single digit sums and times table facts.
- Children should develop a secure understanding of efficient written algorithms for arithmetic by Year 4.
- Related operations (e.g. addition and subtraction) should be introduced together, with explicit links between them.
- The role of place value in arithmetic processes should be modelled and made clear from the start of Y2.

Overview

| | Reception / Year 1 | Year 2 | Year 3 | Year 4 | Year 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fluency in number facts

$\mathrm{U}+\mathrm{U}$ facts

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Adding 1

Adding 2

Bonds to 10

Adding 0

Adding 10

Doubles

Bridging/
compensating

Near doubles

Park Hill Thorns Federation
Routes through calculations
Group A: Year 1 (Within 10)
Adding 1 (e.g. $7+1$ and $1+7$)
Doubles of numbers to 5 (e.g. $4+4$)
Adding 2 (e.g. $4+2$ and $2+4$)
Number bonds to 10 (e.g. $8+2$ and $2+8$)
Adding 10 to a number (e.g. $5+10$ and $10+5$)
Adding 0 to a number (e.g. $3+0$ and $0+3$)
Near doubles (e.g. $3+4$ and $4+3$)
The ones without a family! $5+3,3+5,6+3,3+6$
Group B: Year 2 (Bridging 10)
Doubles of numbers to 10 (e.g. $7+7$)
Near doubles (e.g. $5+6$ and $6+5$)
Bridging (e.g. $8+4$ and $4+8$)

Compensating

Multiplication and Division Facts

Year 2	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables
Year 3	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
Year 4	recall multiplication and division facts for multiplication tables up to 12 $\times 12$

We learn the tables in this order:

$x 10$	$x 5$	$x 2$	$x 4$	$x 8$	$x 3$	$x 6$	$x 9$	$x 7$	$x 11$	$x 12$
Year 2			Year 3			Year 4				

Representing Numbers with concrete materials

Addition	Concrete \& Pictorial Representations	$4+3=7$ $7=4+3$ Foception is a part, three is a part and the whole is Combining two parts so make a whole

Addition	Concrete \& Pictorial Representations	Written Recording
Year 1 Starting at the bigger number and counting on	Count on using cubes or Numicon. A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

Routes through calculations January 2019 Addition
Year 2

Adding two or three single digits.
Column layout - no exchanging.

Concrete \& Pictorial Representations

TO + O using base 10. Continue to develop understanding of partitioning and place value.

Children to represent the base 10 e.g. lines for tens and dot/crosses for
ones.

$41+8$

Written Recording
$41+8$

$1+8=9$
$40+9=49$

Addition	Concrete \& Pictorial Representations	Written Recording
Year 3 Column layoutexchanging (up to 3 digits).	Place Value Counters Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.	$\begin{aligned} & 243 \\ & 368 \end{aligned}$
	100 s 10 s 1s	
		$\frac{11}{611}$
	Children to represent the counters in a place value chart, circling when they make an exchange.	
	$100 \mathrm{~s}\|10 \mathrm{~s}\| \mathrm{Is}$	
	00 0000 000 000 0000 0080 000 000	

 cubes and other items such as beanbags could be used). $4-3=1$

Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.

Q $\otimes O$

Reception /

Year 1
Subtraction by counting back

Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$

Children to represent what they see pictorially e.g.
 $1 / 2 / 3 / 4566778 / 910$

Children to represent the calculation on a number line or number track and show their jumps. Encourage children in Year 1 to use an empty number line

Routes through calculations
Concrete and Pictorial Representations Written Recording Subtraction

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).
Calculate the difference between 8 and 5 .

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

Using Base 10 apparatus to take away without exchanging
48-7

Children to represent the base 10 pictorially, crossing out

Subtraction

Column layout with exchanging (up to 3 digits)

Concrete and Pictorial Representations
Using place value counters with exchanging (exchange)
234-88

Represent the place value counters pictorially; remembering to show what has been exchanged.

Column
subtraction with exchanging (2place decimals)

Written Recording
Develop compact column subtraction with more than one exchange
e.g. $726-358$

Compact column subtraction for numbers with up to 5 digits
e.g. 16324 - 8516

Subtract decimals with the same number of decimal places

Multiplication	Concrete and Pictorial Representations	Written Recording
Year 2	Number lines to show repeated groups 3×4 (3 lots of 4) Cuisenaire rods can be used too. Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$

Multiplication	Concrete and Pictorial Representations	Written Recording
Year 2 Arrays- showing commutative multiplication	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 Children to represent the arrays pictorially. 00 00 00 $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$ 00 00	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Multiplication	Concrete and Pictorial Representations	Written Recording
Year 3 Column layout to TU x U	Using place value counters (base 10 can also be used.) $3 \times 23=3$ lots of $23=3$ lots of 20 and 3 lots of 3 Children to represent the concrete manipulatives pictorially.	Children to record what it is they are doing to show understanding. $\begin{array}{rl} 3 \times & 3 \times 20=60 \\ 20 & 3 \times 3=9 \\ 20 & 3+9=69 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$

Park Hill Thorns Federation

Multiplication
Year 5
Column multiplication

Routes through calculations
Written Recording
Abstract only but might need a repeat of year 4 first(up Long multiplication of 2-, 3-and 4-digit numbers by 2to 4 digit numbers multiplied by 1 or 2 digits)
digit numbers e.g. 124×26
digit numbers e.g

Answer: 3224

Park Hill Thorns F	ion Routes through calculations January 2019	
Division	Concrete and Pictorial Representations	Written Recording
Year 2 Division as sharing Repeated addition	Sharing into equal groups : e.g. 20 divided by 4 is 20 shared equally into 4 parts Grouping and counting e.g. 18 divided by 3 is 18 split into equal groups of 3 18	Abstract number line to represent the equal groups that have been added.
Year 2 Division within arrays- linking to multiplication	Recognise the links between multiplication and division through use of arrays: $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12 \div 4=3 \\ & 12 \div 3=4 \end{aligned}$	

| Division | Concrete and Pictorial Representations | Written Recording |
| :--- | :--- | :--- | :--- |
| Year 3
 Division with a
 remainder | 2d \div 1d with remainders using lollipop sticks. Cuisenaire
 rods, above a ruler can also be used.
 $13 \div 4$
 Use of lollipop sticks to form wholes- squares are made
 because we are dividing by 4.
 (| 65 divided by 3 equals 21 remainder 2
 Children should be encouraged to use their times table facts;
 they could also represent repeated addition on a number
 line.
 '21 groups of 3, with 2 left over' |

Park Hill Thorns Fed	n Routes through calculation	s January 2019
Division	Concrete and Pictorial Representations	Written Recording
Year 4 Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones? Represent the place value counters pictorially.	Children do the calculation using the short division scaffold.

